American Eagle Outfitters Quantum III Pittsburgh, Pennsylvania

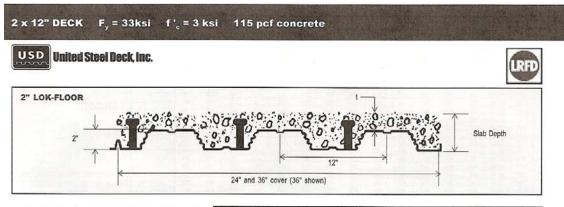
Appendix A – Gravity Loads

A.1 Dead Loads

Dead Loads									
	Typical		Mechanical						
Component	Floor	Roof	Roof						
Concrete Slab	38		38						
Metal Decking		2							
Flooring/Ceiling	3	4	3						
M/E/P	7	10	7						
Rigid Insulation		9							
Membrane		2							
Total Dead Load	48	27	48						

Figure 47 – Dead Loads

Mechanical Unit Surface Loads												
	2/	3 Weight C	1/	3 Weight O	ver 2/3	Area						
	With	Opening	No C	Opening	With	Opening	No Opening					
Total												
Weight	Area	Surface	Area	Surface	Area	Surface	Area	Surface				
(lb)	(ft ²)	Load	(ft ²)	Load	(ft ²)	Load	(ft ²)	Load				
40000	122.5	217.69	225	118.52	272.5	48.93	450	29.63				


Figure 48 – Mechanical Unit Surface Loads

Wall Loads

Curtain Walls 8" CMU, grout/rein. 24" cc Partitions 20 psf (specified in AEO:QIII General Notes)51 psf20 psf (specified in AEO:QIII General Notes)

American Eagle Outfitters Quantum III Pittsburgh, Pennsylvania

The **Deck Section Properties** are per foot of width. The I value is for positive bending (in.⁴); t is the gage thickness in inches; w is the weight in pounds per square foot; S_p and S_n are the section moduli for positive and negative bending (in.³); R_b and ϕV_n , are the interior reaction and the shear in pounds (per foot of width); studs is the number of studs required per foot in order to obtain the full resisting moment, ϕM_n .

The Composite Properties are a list of values for the composite slab. The slab depth is the distance from the bottom of the steel deck to the top of the slab in inches as shown on the sketch. U.L. ratings generally refer to the cover over the top of the deck so it is important to be aware of the difference in names. ϕM_{nf} is the factored resisting moment provided by the composite slab when the "full" number of studs as shown in the upper table are in place; inch kips (per foot of width). Ac is the area of concrete available to resist shear, in.2 per foot of width. Vol. is the volume of concrete in ft.³ per ft.² needed to make up the slab; no allowance for frame or deck deflection is included. W is the concrete weight in pounds per ft.2. Se is the section modulus of the "cracked" concrete composite slab; in.3 per foot of width. Iav is the average of the "cracked" and "uncracked" moments of inertia of the transformed composite slab; in.4 per foot of width. The Iav transformed section analysis is based on steel; therefore, to calculate deflections the appropriate modulus of elasticity to use is 29.5 x 10° psi. ϕM_{no} is the factored resisting moment of the composite slab if there are no studs on the beams (the deck is attached to the beams or walls on which it is resting) inch kips (per foot of width). φV_{nt} is the factored vertical shear resistance of the composite system; it is the sum of the shear resistances of the steel deck and the concrete but is not allowed to exceed \$\$\phi4(f'_c)1/2A_c; pounds (per foot of width). The next three columns list the maximum unshored spans in feet; these values are obtained by using the construction loading requirements of the SDI; combined bending and shear, deflection, and interior reactions are considered in calculating these values. Awy is the minimum area of welded wire fabric recommended for temperature reinforcing in the composite slab; square inches per foot.

DECK PROPERTIES											
Gage		w	As		S _p	S _e	R _b	φV,	studs		
22	0.0295	1.5	0.440	0.338	0.284	0.302	714	1990	0.43		
20	0.0358	1.8	0.540	0.420	0.367	0.387	1010	2410	0.52		
19	0.0418	2.1	0.630	0.490	0.445	0.458	1330	2810	0.61		
18	0.0474	2.4	0.710	0.560	0.523	0.529	1680	3180	0.69		
16	0.0598	3.1	0.900	0.700	0.654	0.654	2470	3990	0.87		

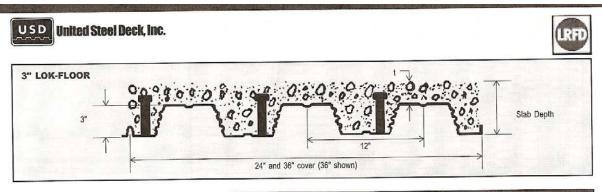

11.12	6.80		Sec.	1000	CC		ITE PR	OPERT	ES	ALL STREET		C.L.	19
	Slab	oMnt	Ą	Vol.	W	S _c in ³	l _{av} in ³	φM _{no}	¢V _{nt}	Max.u	nshored s	pans, fL	A
	Depth	in.k	in ²	ft3/ft2	psf	in ³	in ³	in.k	lbs.	1span	2span	3span	
17.14	4.50	40.27	32.6	0.292	34	1.00	4.4	28.13	4270	6.32	8.46	8.56	0.023
	5.00	46.44	37.5	0.333	38	1.18	6.0	33.12	4610	6.03	8.09	8.19	0.027
0	5.25	49.53	40.0	0.354	41	1.27	6.9	35.69	4790	5.90	7.93	8.02	0.029
gage	5.50	52.61	42.6	0.375	43	1.36	7.9	38.29	4970	5.77	7.77	7.86	0.032
0	6.00	58.78	48.0	0.417	48	1.55	10.1	43.58	5340	5.55	7.49	7.58	0.036
9	6.25	61.87	50.8	0.438	50	1.65	11.3	46.26	5540	5.45	7.36	7.45	0.038
N	6.50	64.95	53.6	0.458	53	1.75	12.7	48.97	5730	5.36	7.24	7.32	0.041
ม	7.00	71.12	59.5	0.500	58	1.94	15.7	54.44	6150	5.18	7.01	7.10	0.045
	7.25	74.21	61.9	0.521	60	2.04	17.4	57.20	6310	5.10	6.91	6.99	0.047
	7.50	77.29	64.3	0.542	62	2.14	19.2	59.97	6480	5.05	6.81	6.89	0.050
and i	4.50	48.60	32.6	0.292	34	1.20	4.8	33.77	4560	7.42	9.71	10.03	0.023
	5.00	56.18	37.5	0.333	38	1.42	6.5	39.80	5030	7.07	9.28	9.59	0.027
gage	5.25	59.96	40.0	0.354	41	1.53	7.4	42.91	5210	6.91	9.09	9.39	0.029
ଡ୍ର	5.50	63.75	42.6	0.375	43	1.64	8.5	46.05	5390	6.76	8.91	9.20	0.032
10	6.00	71.32	48.0	0.417	48	1.87	10.9	52.47	5760	6.49	8.57	8.86	0.036
0)	6.25	75.11	50.8	0.438	50	1.99	12.2	55.73	5960	6.37	8.42	8.70	0.038
0	6.50	78.90	53.6	0.458	53	2.10	13.7	59.02	6150	6.26	8.27	8.55	0.041
23	7.00	86.47	59.5	0.500	58	2.34	16.9	65.67	6570	6.05	8.00	8.27	0.045
	7.25	90.26	61.9	0.521	60	2.46	18.7	69.03	6730	5.95	7.87	8.14	0.047
	7.50	94.05	64.3	0.542	62	2.58	20.6	72.41	6900	5.89	7.75	8.01	0.050
	4.50	55.85	32.6	0.292	34	1.38	5.1	38.67	4560	8.35	10.55	10.91	0.023
	5.00	64.68	37.5	0.333	38	1.63	6.9	45.61	5240	7.94	10.10	10.43	0.027
ge	5.25	69.10	40.0	0.354	41	1.75	7.9	49.19	5590	7.76	9.89	10.22	0.029
	5.50	73.52	42.6	0.375	43	1.88	9.0	52.83	5790	7.59	9.69	10.01	0.032
ag	6.00	82.35	48.0	0.417	48	2.15	11.6	60.25	6160	7.29	9.33	9.64	0.036
ö	6.25	86.77	50.8	0.438	50	2.28	13.0	64.02	6360	7.15	9.16	9.47	0.038
5	6.50	91.19	53.6	0.458	53	2.42	14.5	67.83	6550	7.02	9.00	9.30	0.041
-	7.00	100.03	59.5	0.500	58	2.69	17.9	75.53	6970	6.78	8.71	9.00	0.045
	7.25	104.44	61.9	0.521	60	2.83	19.8	79.42	7130	6.67	8.57	8.86	0.047
	7.50	108.86	64.3	0.542	62	2.97	21.8	83.33	7300	6.59	8.44	8.72	0.050
110	4.50	62.08	32.6	0.292	34	1.53	5.4	42.99	4560	9.20	11.33	11.71	0.023
	5.00	72.04	37.5	0.333	38	1.81	7.3	50.72	5240	8.75	10.84	11.20	0.023
6	5.25	77.02	40.0	0.354	41	1.95	8.3	54.72	5590	8.54	10.62	10.97	0.029
age	5.50	82.00	42.6	0.375	43	2.10	9.5	58.78	5950	8.35	10.41	10.76	0.025
10	6.00	91.95	48.0	0.373	48	2.39	12.1	67.07	6530	8.01	10.41	10.76	0.032
5	6.25	96.93	50.8	0.438	50	2.54	13.6	71.29	6730	7.86	9.84	10.30	0.038
00	6.50	101.91	53.6	0.458	53	2.69	15.2	75.55	6920	7.71	9.64	10.00	0.041
Ĩ	7.00	111.87	59.5	0.500	58	3.00	18.8	84.17	7340	7.44	9.36	9.67	0.045
	7.25	116.85	61.9	0.500	60	3.16	20.7	88.52	7500	7.32	9.21	9.52	0.045
	7.50	121.83	64.3	0.542	62	3.31	22.8	92.91	7670	7.24	9.07	9.38	0.047
	4.50	62.08	32.6	0.292	34	1.88	6.0	42.99	4560	10.49	12.57	12.99	0.030
	5.00	72.04	37.5	0.232	38	2.22	8.0	42.99	5240	9.96	12.03	12.99	0.023
Ø	5.00	77.02	40.0	0.353	41	2.22	9.2	54.72	5240	9.90	11.78	12.43	0.027
gage	5.50	82.00	42.6	0.354	41	2.40	9.2	58.78	5950	9.72	11.55	12.18	0.029
ñ	6.00	91.95	42.0	0.375	43	2.58	13.4		6700				
5	6.00	96.93	48.0	0.417	48	3.13	13.4	67.07	7090	9.11 8.93	11.13	11.50	0.036
-	6.50	101.91	53.6	0.458	53	3.13		71.29			10.94		0.038
9	7.00	101.91					16.8	75.55	7490	8.76	10.75	11.11	0.041
-	7.00		59.5	0.500	58	3.71	20.6	84.17	8150	8.45	10.40	10.75	0.045
		116.85	61.9	0.521	60	3.90	22.8	88.52	8310	8.31	10.24	10.59	0.047
3.25	7.50	121.83	64.3	0.542	62	4.10	25.1	92.91	8480	8.22	10.09	10.43	0.050

Figure 49 – Roof Composite Roof Deck (United Steel Deck, 2003)

American Eagle Outfitters Quantum III Pittsburgh, Pennsylvania

The **Deck Section Properties** are per foot of width. The I value is for positive bending (in.⁴); t is the gage thickness in inches; w is the weight in pounds per square foot; S_p and S_n are the section moduli for positive and negative bending (in.³); R_p and φV_n , are the interior reaction and the shear in pounds (per foot of width); studs is the number of studs required per foot in order to obtain the full resisting moment, φM_{nt} .

DECK PROPERTIES											
Gage	t	W	As		S,	S,	R	φV,	studs		
22	0.0295	1.7	0.505	0.797	0.454	0.500	718	2190	0.49		
20	0.0358	2.1	0.610	0.993	0.583	0.620	1020	3220	0.59		
19	0.0418	2.4	0.710	1.158	0.708	0.726	1350	4310	0.69		
18	0.0474	2.8	0.810	1.324	0.832	0.832	1720	4880	0.79		
16	0.0598	3.5	1.020	1.666	1.045	1.045	2540	6130	0.99		

The Composite Properties are a list of values for the composite slab. The slab depth is the distance from the bottom of the steel deck to the top of the slab in inches as shown on the sketch. U.L. ratings generally refer to the cover over the top of the deck so it is important to be aware of the difference in names. ϕM_{nt} is the factored resisting moment provided by the composite slab when the "full" number of studs as shown in the upper table are in place; inch kips (per foot of width). A_c is the area of concrete available to resist shear, in.2 per foot of width. Vol. is the volume of concrete in ft.3 per ft.2 needed to make up the slab; no allowance for frame or deck deflection is included. W is the concrete weight in pounds per ft.2. S, is the section modulus of the "cracked" concrete composite slab; in.3 per foot of width. lav is the average of the "cracked" and "uncracked" moments of inertia of the transformed composite slab; in.4 per foot of width. The Iav transformed section analysis is based on steel; therefore, to calculate deflections the appropriate modulus of elasticity to use is 29.5 x 10° psi. φM_{no} is the factored resisting moment of the composite slab if there are no studs on the beams (the deck is attached to the beams or walls on which it is resting) inch kips (per foot of width). ϕV_{nt} is the factored vertical shear resistance of the composite system; it is the sum of the shear resistances of the steel deck and the concrete but is not allowed to exceed $\varphi 4(f_c)^{j_2}A_c;$ pounds (per foot of width). The next three columns list the maximum unshored spans in feet; these values are obtained by using the construction loading requirements of the SDI; combined bending and shear, deflection, and interior reactions are considered in calculating these values. Awy is the minimum area of welded wire fabric recommended for temperature reinforcing in the composite slab; square inches per foot.

1000	States and the	a fully and			GO		TEPRO	PERTIE	S	and the state	St. Stal		北京 (1)
聖得	Slab	φM _{et}	A.	Vol.	W	S _c in ³	l _{av} in ³	oMno	φV _{nt}		shored sp		Amaf
	Depth	in.k	A in ²	ft3/ft2	psf	in ³	in ³	in.k	lbs.	1span			A LA CALCER
0.00	5.50	52.80	37.6	0.333	38	1.27	7.6	35.57	4810	8.06	10.49	10.83	0.023
1.15	6.00	59.89	42.0	0.375	43	1.46	9.7	40.92	5120	7.70	10.06	10.39	0.027
gage	6.25	63.43	44.3	0.396	46	1.56	10.9	43.68	5280	7.54	9.86	10.18	0.029
	6.50	66.97	46.6	0.417	48	1.66	12.1	46.49	5440	7.39	9.67	9.99	0.032
	7.00	74.05	51.3	0.458	53	1.86	15.0	52.24	5770	7.11	9.33	9.63	0.036
07	7.25	77.59	53.8	0.479	55	1.97	16.6	55.17	5950	6.99	9.17	9.47	0.038
N	7.50	81.13	56.3	0.500	58	2.07	18.3	58.14	6120	6.87	9.02	9.31	0.041
N	8.00	88.22	61.3	0.542	62	2.29	22.0	64.15	6470	6.68	8.73	9.02	0.045
	8.25	91.76	63.9	0.563	65	2.40	24.1	67.20	6660	6.61	8.60	8.88	0.047
	8.50	95.30	66.6	0.583	67	2.50	26.3	70.27	6840	6.54	8.47	8.75	0.050
	5.50	62.81	37.6	0.333	38	1.51	8.1	42.29	5250	9.35	11.75	12.14	0.023
	6.00	71.37	42.0	0.375	43	1.73	10.4	48.61	5870	8.92	11.27	11.65	0.027
۵	6.25	75.65	44.3	0.396	46	1.85	11.7	51.89	6180	8.73	11.06	11.43	0.029
Ō)	6.50	79.92	46.6	0.417	48	1.97	13.0	55.23	6470	8.55	10.85	11.21	0.032
gage	7.00	88.48	51.3	0.458	53	2.21	16.1	62.07	6800	8.23	10.48	10.82	0.036
0)	7.25	92.76	53.8	0.479	55	2.34	17.8	65.57	6980	8.08	10.30	10.64	0.038
-	7.50	97.03	56.3	0.500	58	2.46	19.6	69.10	7150	7.94	10.13	10.47	0.041
202	8.00	105.59	61.3	0.542	62	2.72	23.6	76.28	7500	7.72	9.82	10.15	0.045
	8.25	109.87	63.9	0.563	65	2.85	25.7	79.92	7690	7.64	9.67	9.99	0.047
	8.50	114.15	66.6	0.583	67	2.98	28.0	83.59	7870	7.56	9.53	9.85	0.050
	5.50	72.04	37.6	0.333	38	1.72	8.7	48.35	5250	10.47	12.73	13.16	0.023
	6.00	82.00	42.0	0.375	43	1.98	11.0	55.60	5870	9.98	12.23	12.64	0.027
ge	6.25	86.97	44.3	0.396	46	2.12	12.4	59.36	6180	9.77	11.99	12.40	0.029
	6.50	91.95	46.6	0.417	48	2.25	13.8	63.20	6510	9.56	11.78	12.17	0.032
a	7.00	101.91	51.3	0.458	53	2.53	17.0	71.08	7170	9.19	11.37	11.75	0.036
5	7.25	106.89	53.8	0.479	55	2.68	18.8	75.10	7510	9.02	11.18	11.56	0.038
ดั	7.50	111.87	56.3	0.500	58	2.82	20.7	79.17	7860	8.87	11.00	11.37	0.041
-	8.00	121.83	61.3	0.542	62	3.12	24.9	87.46	8570	8.62	10.67	11.02	0.045
	8.25	126.81	63.9	0.563	65	3.27	27.2	91.65	8780	8.52	10.51	10.86	0.047
	8.50	131.78	66.6	0.583	67	3.42	29.6	95.89	8960	8.43	10.36	10.71	0.050
	5.50	80.96	37.6	0.333	38	1.94	9.1	54.28	5250	11.48	13.61	14.07	0.023
	6.00	92.32	42.0	0.375	43	2.23	11.6	62.43	5870	10.94	13.07	13.51	0.027
(1)	6.25	98.00	44.3	0.396	46	2.38	13.0	66.67	6180	10.70	12.83	13.26	0.029
age	6.50	103.68	46.6	0.417	48	2.53	14.5	70.99	6510	10.48	12.59	13.01	0.032
ñ	7.00	115.04	51.3	0.458	53	2.85	17.9	79.88	7170	10.07	12.16	12.57	0.036
01	7.25	120.72	53.8	0.479	55	3.01	19.8	84.42	7510	9.88	11.96	12.36	0.038
00	7.50	126.40	56.3	0.500	58	3.17	21.8	89.03	7860	9.71	11.77	12.16	0.041
	8.00	137.76	61.3	0.542	62	3.51	26.2	98.39	8570	9.43	11.42	11.80	0.045
-	8.25	143.44	63.9	0.563	65	3.68	28.6	103.15	8930	9.33	11.25	11.62	0.047
	8.50	149.12	66.6	0.583	67	3.85	31.1	107.94	9300	9.23	11.09	11.46	0.050
	5.50	80.96	37.6	0.333	38	2.36	10.1	54.28	5250	13.04	15.20	15.71	0.023
	6.00	92.32	42.0	0.335	43	2.72	12.8	62.43	5870	12.43	14.61	15.10	0.027
45	6.00	92.32	44.3	0.375	45	2.90	14.3	66.67	6180	12.15	14.34	14.82	0.029
age	6.50	103.68	46.6	0.350	40	3.09	16.0	70.99	6510	11.89	14.08	14.55	0.032
-	7.00	115.04	40.0 51.3	0.417	53	3.48	19.7	79.88	7170	11.42	13.60	14.06	0.036
5	7.25	115.04	53.8	0.458	55	3.68	21.7	84.42	7510	11.21	13.38	13.83	0.03
100	1.20			0.479	58	3.89	23.9	89.03	7860	11.01	13.17	13.61	0.04
6	7.50	126.40	56.3	0.500	62	4.30	28.7	98.39	8570	10.69	12.78	13.20	0.045
2	8.00	137.76	61.3			4.30	31.3	103.15	8930	10.05	12.59	13.01	0.04
	8.25	143.44	63.9	0.563	65				9300	10.57	12.05	12.83	0.050
	8.50	149.12	66.6	0.583	67	4.72	34.1	107.94	9000	10.40	12.41	12.03	0.000

3" LOK-FLOOR

Figure 50 – Typical Floor Composite Deck (United Steel Deck, 2003)

American Eagle Outfitters Quantum III Pittsburgh, Pennsylvania

A.2 Live Loads

Location	Load (psf)	Description								
Roof	20 18	A _t = 10' x 30' = 300 ft ² ∴ R ₁ = 1.2 - 0.001A _t = 1.2 - 0.001 * (300 ft ²) = 0.9 F = 0, the roof pitch is small enough to be negligible ∴ R ₂ = 1 ∴ L _r = R ₁ * R ₂ * L = 0.9 x 1.0 * 20 = 18 psf								
		Offices requi to be flexible is not current	Offices require only 50 psf but since the building is designed to be flexible for tenant fit out, the location of corridors s not currently known, and the conservative corridor load s applied over the entire plan							
0/5	80 54.6 48.3		300 ft ² 15 ft x 30 ft	=	450 ft ²					
Offices and corridors above the first floor		L =	L _o x (0.25 +	15 (K _{LL} x A _t) ^{0.5}	-) =					
		=	80 x (0.25 +	15 (4 x 300 ft ²) ^{0.5}	-) =	54.6 psf				
		L =	L _o x (0.25 +	15 (K _{LL} x A _t) ^{0.5}	-)=					
		=	80 x (0.25 +	15 (4 x 450 ft ²) ^{0.5}	-) =	48.3 psf				
Lobbi es and first floor corridors	100	Irreducible p	er ASCE 7-05 S	ection 4.8.2						
Stairs	100									